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ABSTRACT 

In motion control and motion simulation, inertial properties (mass, center of gravity, 

inertia tensor) of object are fundamental and important parameters that serve as input 

values and have a significant impact on the accuracy of results. For this reason, an 

accurate identification method of inertial properties is strongly demanded. In multi-

body dynamics, the inertial properties of individual links cannot be identified from 

link motion and inter-joint torque or external force data, because they are redundant 

to the multi-body dynamics model. Therefore, the minimum dynamic parameters 

necessary to represent the multibody dynamics model has been defined and identified. 

These dynamic parameters are obtained by combining the geometric parameters and 

the inertial properties of the counterpart elements and are called the minimal set of 

inertial parameters. The conventional identification methods use a set of measured 

link motion and ground reaction forces. Only the minimal set of inertial parameters 

for a sagittal plane can be identified from movements such as walking motion of 

human bodies. Thus, it is difficult to apply these methods to the identification of 

individual human bodies. In this paper, a new method for identifying the minimal set 

of inertial parameters of a multi-body system is developed by expanding and applying 

the identification method based on free vibration measurements, which is the 

identification method for inertial properties of single-body. This method shows that 

all minimal set of inertial parameters can be identified with high accuracy from 

relatively simple motion measurements, both theoretically and by means of basic 

experiments. 

Keywords: Minimal set of inertial parameters, Inertial properties, Identification, 

Motion simulation, Multi-body system. 

1 INTRODUCTION 

In motion control and motion simulation, inertial properties (mass, center of gravity, inertia tensor) 

of object are fundamental and important parameters that serve as input values and have a 

significant impact on the accuracy of results, therefore an accurate identification method of 

inertial properties is strongly demanded. Methods for identifying inertial properties can be 

classified into two types: theoretical calculation using CAD and other computational methods, 

and experimental identification with measurement data. Experimental identification is also 

important as a means of verifying the results of theoretical calculation methods. For this reason, 

various methods have been developed for the identification of the inertial properties of single-

body. In particular, identification methods based on free vibration measurements [1] have been 

developed in recent years, making it possible to measure inertial properties with sufficiently high 

accuracy and short measurement time for practical use.  

In robotics and ergonomics, geometric parameters such as link lengths and the inertial properties 



of individual links are required when dealing with multi-body dynamics models consisting of 

multiple parts connected by joints. Furthermore, there is a demand to identify the inertial 

properties of the links in the connected state, due to the identification requirements of the 

mechanism such as robot in the assembled state and the constraint that the body cannot naturally 

be detached in the measurement of the human body. While geometric parameters can be easily 

identified from static measurements, the inertial properties of individual links cannot be identified 

from link motion and inter-joint torque or external force data, because they are redundant to the 

multi-body dynamics model. Therefore, the minimum dynamic parameters necessary to represent 

the multibody dynamics model has been defined and identified. These dynamic parameters are 

obtained by combining the geometric parameters and the inertial properties of the counterpart 

elements and are called the minimal set of inertial parameters. 

Numerical and analytical methods for calculating the minimal set of inertial parameters have been 

established [2-4] and various experimental identification methods have been developed. The 

conventional identification methods utilize a set of measured link motion and inter-joint torques 

[5] or a set of measured link motion and floor reaction forces [6]. The former requires a torque 

sensor for every joint. Thus, it cannot be used in cases where it is difficult to estimate or measure 

joint torque, such as humans and humanoid robots. The latter can only identify the minimal set of 

inertial parameters for a plane in the direction of travel from movements such as walking. It has 

problems such as the difficulty in selecting an effective motion for identifying all minimal set of 

inertial parameters and the large measurement error and has not yet applied to the identification 

of individual human bodies. Thus, a new identification method which can be applied to individual 

human bodies is demanded. 

In the previous method for identifying inertial properties by free vibration measurement [1], the 

free vibration of an object with small amplitude is measured under the pseudo-peripheral free 

boundary condition with suspension springs. The effect of the suspension spring is precisely 

modelled and considered to enable highly accurate identification. By expressing the forces on the 

suspension spring in three dimensions in terms of a stiffness matrix, if either the force or 

deformation on the suspension spring is measured, it is possible to calculate the other. The 

advantage of this method is that the forces can be calculated by measuring the position and posture 

of the platform suspended by suspension springs, and no actuator or load cell is required. However, 

this method is the identification method for single-body and cannot simply be applied to the 

identification of the minimal set of inertial parameters of multi-body system.  

Based on this background, in this paper, a new method for identifying the minimal set of inertial 

parameters of multi-body system is developed by expanding and applying the identification 

method based on free vibration measurements, which is a method for identifying the inertial 

properties of a single-body, and evaluated its performance.  

2 IDENTIFICATION METHOD FOR MINIMAL SET OF INERTIAL PARAMETERS 

In our new method, the procedure for identifying the minimal set of inertial parameters of a multi-

body system consists of two steps. As shown in Fig. 1, the multibody system is modelled as a 

base link and other links, with the base link attached to the platform and the platform connected 

to the suspension springs. In the first step, the relative motion between the links is fixed to set a 

posture and the overall inertial properties in several postures are identified by using identification 

method for the single-body inertial properties [1]. In the second step, the relative motion between 

the links is measured. This motion is caused by muscular forces when human body is measured. 

Figure 1. Model of multibody system. 



2.1 Identification of the overall inertial properties in several postures 

In the following, a multi-body system connected by spherical joints is taken as an example for the 

formulation. Equations (1)-(3) show the minimal set of inertial parameters of a multi-body system 

connected by spherical joints [3]. 

 𝑀𝑗−1 = 𝑚𝑗−1 + 𝑀𝑗,  (1) 

 𝐌𝐒𝑗−1 = 𝑚𝑗−1 𝐬𝑗−1
𝑗−1

+ 𝑀𝑗 𝐩𝑗
𝑗−1𝑗−1

, (2) 

 𝐉𝑗−1 = 𝐈𝑗−1
𝑗−1

+ 𝑀𝑗[ 𝐩𝑗
𝑗−1𝑗−1

×]
𝑇
[ 𝐩𝑗

𝑗−1𝑗−1
×], (3) 

where the subscript 𝑗 indicates the 𝑗-th link(0≦𝑗≦𝑛), 𝑚𝑗 is the mass of link 𝑗, 𝐬𝑗
𝑗

 is the vector 

from the 𝑗-coordinate to the center of gravity of link 𝑗, 𝐈𝑗
𝑗

 is the inertia tensor of link 𝑗 around 

the 𝑗-coordinate origin, expressed in the 𝑗-coordinate system, 𝐩𝑗
𝑗−1𝑗−1

is the vector from the 𝑗-1 

coordinate origin to the 𝑗 -coordinate origin, expressed in the 𝑗 -1 coordinate system, 𝑀𝑗  is the 

minimal set of inertial parameters for the mass of link 𝑗 , 𝐌𝐒𝑗  is the minimal set of inertial 

parameters for the center of gravity of link 𝑗 and 𝐉𝑗 is the minimal set of inertial parameters for 

the inertia tensor of link 𝑗. The operator [  ×] is defined by Equation (4). 

 [ 𝐩𝑗
𝑗−1𝑗−1

×] ≜

[
 
 
 
 0 − 𝐩𝑗𝑧

𝑗−1𝑗−1
𝐩𝑗𝑦

𝑗−1𝑗−1

𝐩𝑗𝑧
𝑗−1𝑗−1

0 − 𝐩𝑗𝑥
𝑗−1𝑗−1

− 𝐩𝑗𝑦
𝑗−1𝑗−1

𝐩𝑗𝑥
𝑗−1𝑗−1

0 ]
 
 
 
 

. (4) 

The overall inertial properties in several postures are identified by using identification method for 

the single-body inertial properties [1]. Equations (5)-(6) show the relationship between the overall 

inertial properties and the minimal set of inertial parameters of each link. 

 𝑀0𝐬𝑡,𝑖 = ∑ 𝐑𝑗,𝑖
0 𝐌𝐒𝑗

𝑛
𝑗=0 , (5) 

 𝐈𝑡𝑔,𝑖 − 𝑀0[𝐬𝑡,𝑖 ×]
𝑇
[𝐬𝑡,𝑖 ×] = 𝐉0 − [𝐬𝑡,𝑖 ×]

𝑇
[∑ 𝐑𝑗,𝑖

0 𝐌𝐒𝑗
𝑛
𝑗=0 ×] − [∑ 𝐑𝑗,𝑖

0 𝐌𝐒𝑗
𝑛
𝑗=0 ×]

𝑇
[𝐬𝑡,𝑖 ×]  

 +∑ ( 𝐑𝑗,𝑖
0 𝐉𝑗 𝐑𝑗𝑖

𝑇0 + [∑ ( 𝐑𝑗−1,𝑖
0𝑗

𝑘=1 𝐩𝑗
𝑗−1

)
𝑗−1

×]
𝑇
[ 𝐑𝑗,𝑖

0 𝐌𝐒𝑗 ×]𝑛
𝑗=1  (6) 

 +[ 𝐑𝑗,𝑖
0 𝐌𝐒𝑗 ×]

𝑻

[∑ ( 𝐑𝑗−1,𝑖
0𝑗

𝑘=1 𝐩
𝑗

𝑗−1
)

𝑗−1
×]),  

where the subscript 𝑖  indicates the 𝑖 -th measurement, 𝐬𝑡  is the vector from the base link 

coordinates to the center of gravity of multi-body system, expressed in the base link coordinate 

system, 𝐈𝑡𝑔 is the inertia tensor of multi-body system around the center of gravity, expressed in 

the base link coordinate system and 𝐑𝑗
0   is the rotation matrix that transforms from the 𝑗 -

coordinate system to the base link coordinate system. 𝑀0 indicates the overall mass and is treated 

as a known parameter as the overall weight can be measured.  

The overall inertial properties are identified for 𝑘  postures. Using Equations (5) and (6), the 

results of each identification can be arranged and expressed as a linear relationship for the minimal 

set of inertial parameters, as in Equation (7). 

 

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑀0𝑠𝑡𝑥,1

𝑀0𝑠𝑡𝑦,1

𝑀0𝑠𝑡𝑧,1

𝐼𝑡𝑔𝑥𝑥,1 − 𝑀0(𝑠𝑡𝑦,1
2 + 𝑠𝑡𝑧,1

2 )

𝐼𝑡𝑔𝑦𝑦,1 − 𝑀0(𝑠𝑡𝑥,1
2 + 𝑠𝑡𝑧,1

2 )

𝐼𝑡𝑔𝑧𝑧,1 − 𝑀0(𝑠𝑡𝑥,1
2 + 𝑠𝑡𝑦,1

2 )

𝐼𝑡𝑔𝑥𝑦,1 + 𝑀0𝑠𝑡𝑥,1𝑠𝑡𝑦,1

𝐼𝑡𝑔𝑧𝑥,1 + 𝑀0𝑠𝑡𝑥,1𝑠𝑡𝑧,1

𝐼𝑡𝑔𝑦𝑧,1 + 𝑀0𝑠𝑡𝑦,1𝑠𝑡𝑧,1

⋮
𝐼𝑡𝑔𝑦𝑧,𝑘 + 𝑀0𝑠𝑡𝑦,1𝑠𝑡𝑧,𝑘 ]

 
 
 
 
 
 
 
 
 
 
 
 

= 𝐙𝚽𝐵, (7) 



 𝚽𝐵 = [𝛟𝐵0
𝑇 , 𝛟𝐵1

𝑇 , ⋯ ,𝛟𝐵𝑛
𝑇 ]𝑇 , (8) 

 𝛟𝐵𝑗 = [𝑀𝑆𝑗𝑥 ,𝑀𝑆𝑗𝑦,𝑀𝑆𝑗𝑧, 𝐽𝑗𝑥𝑥, 𝐽𝑗𝑦𝑦, 𝐽𝑗𝑧𝑧, 𝐽𝑗𝑦𝑧, 𝐽𝑗𝑧𝑥 , 𝐽𝑗𝑥𝑦]
𝑇
, (9) 

where 𝚽𝐵 ∈ ℝ9𝑗×1  is a vector of minimal set of inertial parameters and 𝐙 ∈ ℝ9𝑘×9𝑗  is a 

coefficient matrix over 𝚽𝐵, consisting of rotation matrix 𝐑 and the vector 𝐩.  

The rank of the coefficient matrix 𝐙 is less than the number of minimal sets of inertial parameters, 

no matter how many times the overall inertial properties are measured by changing the posture. 

Therefore, 𝚽𝐵 cannot be obtained from Equation (7) directly. 

Then in this paper, Equation (7) is transformed as follows, 

 

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑀0𝑠𝑡𝑥,1

𝑀0𝑠𝑡𝑦,1

𝑀0𝑠𝑡𝑧,1

𝐼𝑡𝑔𝑦𝑦,1 − 𝑀0(𝑠𝑡𝑥,1
2 + 𝑠𝑡𝑧,1

2 )

𝐼𝑡𝑔𝑥𝑥,1 − 𝑀0(𝑠𝑡𝑦,1
2 + 𝑠𝑡𝑧,1

2 ) − 𝐼𝑡𝑔𝑦𝑦,1 + 𝑀0(𝑠𝑡𝑥,1
2 + 𝑠𝑡𝑧,1

2 )

𝐼𝑡𝑔𝑥𝑥,1 − 𝑀0(𝑠𝑡𝑦,1
2 + 𝑠𝑡𝑧,1

2 ) − 𝐼𝑡𝑔𝑧𝑧,1 + 𝑀0(𝑠𝑡𝑥,1
2 + 𝑠𝑡𝑦,1

2 )

𝐼𝑡𝑔𝑥𝑦,1 + 𝑀0𝑠𝑡𝑥,1𝑠𝑡𝑦,1 − 𝐼𝑡𝑔𝑧𝑥,1 − 𝑀0𝑠𝑡𝑥,1𝑠𝑡𝑧,1

𝐼𝑡𝑔𝑧𝑥,1 + 𝑀0𝑠𝑡𝑥,1𝑠𝑡𝑧,1 − 𝐼𝑡𝑔𝑦𝑧,1 − 𝑀0𝑠𝑡𝑦,1𝑠𝑡𝑧,1

𝐼𝑡𝑔𝑥𝑦,1 + 𝑀0𝑠𝑡𝑥,1𝑠𝑡𝑦,1 + 𝐼𝑡𝑔𝑧𝑥,1 + 𝑀0𝑠𝑡𝑥,1𝑠𝑡𝑧,1

⋮
𝐼𝑡𝑔𝑥𝑦,𝑘 + 𝑀0𝑠𝑡𝑥,𝑘𝑠𝑡𝑦,𝑘 + 𝐼𝑡𝑔𝑧𝑥,𝑘 + 𝑀0𝑠𝑡𝑥,𝑘𝑠𝑡𝑧,𝑘 ]

 
 
 
 
 
 
 
 
 
 
 
 

= 𝐙𝑠𝚽𝑠, (10) 

 𝚽𝑠 = [𝛟𝑠0
𝑇 , 𝛟𝑠1

𝑇 , ⋯ ,𝛟𝑠𝑛
𝑇 , ∑ 𝐽𝑗𝑦𝑦

𝑛
𝑗=0 ]

𝑇
, (11) 

 𝛟𝑠𝑗 = [𝑀𝑆𝑗𝑥 ,𝑀𝑆𝑗𝑦,𝑀𝑆𝑗𝑧, 𝐽𝑗𝑥𝑥 − 𝐽𝑗𝑦𝑦, 𝐽𝑗𝑧𝑧 − 𝐽𝑗𝑦𝑦, 𝐽𝑗𝑦𝑧, 𝐽𝑗𝑧𝑥 , 𝐽𝑗𝑥𝑦]
𝑇
, (12) 

where 𝚽𝑠 ∈ ℝ8𝑗+1×1 is a subset vector of minimal set of inertial parameters and consists of a part 

of minimal set of inertial parameters and relative expression for the diagonal term of the inertia 

tensor and 𝐙𝑠 ∈ ℝ9𝑘×8𝑗+1 obtained by transforming 𝐙 is a coefficient matrix over 𝚽𝑠. 

By identifying the overall inertial properties in multiple postures, it is possible to identify the 

subset vector 𝚽𝑠  from Equation (10) when the coefficient matrix 𝐙𝑠  is of sufficient rank to 

identify the subset vector 𝚽𝑠.  

2.2 Measurement of the relative motion between links 

The identification of the overall inertial properties in multiple postures yields the subset vector 

𝚽𝑠. As a result, the entire minimal set of inertial parameters can be obtained if the remaining 𝐽𝑗𝑦𝑦 

can be obtained. The value of  𝐽𝑗𝑦𝑦 can be identified from relatively simple movements, such as 

the relative motion of links on a certain plane. In experiments, relative motion between the links 

can be easily measured. 

The equations of motion of the multi-body system can be expressed by the model shown in 

Equation (13) [7]. The upper part of Equation (13) represents the free motion of the base link, 

while the lower part represents the chain motion of the links connected to the base link. 

 [
𝐇𝑂1 𝐇𝑂2

𝐇𝐶1 𝐇𝐶2
] [

�̈�0

�̈�𝑐
] + [

𝐛𝑂

𝐛𝐶
] = [

0
𝛕
] + [

𝐅𝑂

𝐅𝐶
],  (13) 

where 𝐇 is the inertia matrix, 𝐛 is the sum of the Coriolis force, centrifugal force and gravity 

force, 𝛕 is the joint torque, 𝐅 is the external force, 𝐪0 is the generalized coordinates of the base 

link and  𝐪𝐶 is the joint angle vector. 

Equation (13) can be transformed into Equation (14) using a vector of aligned minimal set of 

inertial parameters 𝚽𝐵 [7]. 

 [
𝐘𝐵1

𝐘𝐵2
]𝚽𝐵 + [

𝐘𝐵1𝑀0

𝐘𝐵2𝑀0
]𝑀0 = [

0
𝛕
] + [

𝐅𝑂

𝐅𝐶
],  (14) 

where 𝐘 is called as the regressor matrix over 𝚽𝐵 and is function of 𝐪0, 𝐪𝐶 , �̇�0, �̇�𝐶, �̈�0 and �̈�𝑐. 



The lower part of Equation (14) is utilized in the identification methods using a set of measured 

link motion and inter-joint torques [5]. The upper part of Equation (14) and floor reaction forces 

as external forces is utilized in the identification methods a set of measured link motion and floor 

reaction forces [6]. Our proposed method uses the upper part of Equation (14). The external force 

is replaced the forces received from the suspension springs of the measurement system installed 

to create the boundary conditions of pseudo peripheral freedom, which can be calculated from the 

position measurements because they are modelled precisely. Measurement of the joint torque 𝛕 is 

not required in our proposed method. As the base link is fixed to the platform, the influence of the 

platform is also considered. 

 𝐘𝐵1𝚽𝐵 + 𝐘𝐵1𝑀0𝑀0 + 𝐌𝑃�̈�0 = 𝐊𝐪0,  (15) 

where 𝐌𝑃 is the mass matrix of the platform and 𝐊 is the stiffness matrix related to the forces 

received from the suspension springs [1]. 

Arranging Equation (15) at any given time yields Equation (16). Equation (16) can be used to 

identify the remaining 𝐽𝑗𝑦𝑦. 

 

[
 
 
 
𝐊𝐪0,𝑡1 − 𝐘𝐵1𝑀0,𝑡1𝑀0 − 𝐌𝑃�̈�0,𝑡1

𝐊𝐪0,𝑡2 − 𝐘𝐵1𝑀0,𝑡2𝑀0 − 𝐌𝑃�̈�0,𝑡2

⋮
𝐊𝐪0,𝑡𝑙 − 𝐘𝐵1𝑀0,𝑡𝑙𝑀0 − 𝐌𝑃�̈�0,𝑡𝑙 ]

 
 
 
= [

𝐘𝐵1,𝑡1

𝐘𝐵1,𝑡2

⋮
𝐘𝐵1,𝑡𝑙

]𝚽𝐵,  (16) 

where the subscript 𝑡𝑙 indicates the 𝑙-th arbitrary time. 

3 EXPERIMENT 

3.1 Identification Result 

The performance of the proposed identification method was evaluated with experiments. The 

object to be measured and the coordinate system are shown in Fig. 2. The measuring devices used 

for the measurements are shown in Fig. 3.  

Figure 2. Two-link measurement objects and coordiinate system. 

Figure 3. Measuring tools. 



The measurement object is a system of two links connected by a spherical joint. The performance 

evaluation is carried out as follows. The inertial properties of each link are identified using the 

device shown in Fig. 3 separately and shown in Table 1. Reference values of the minimal set of 

inertial parameters are calculated from the separately identified results. These values are 

compared with the identification results of the minimal set of inertial parameters with the links 

connected using the proposed identification method. 

Table 1. Inertial properties of each link 

 𝑚 [kg] 𝐼𝑥𝑥[kgm2] 𝐼𝑦𝑦[kgm2] 𝐼𝑧𝑧[kgm2] 𝐼𝑥𝑦[kgm2] 

link 0 65.921 1.8506 1.4892 1.4157 -0.0081 

link 1 14.896 0.0774 0.1020 0.0458 0.0000 

 𝐼𝑧𝑥[kgm2] 𝐼𝑦𝑧[kgm2] 𝑠𝑥[m] 𝑠𝑦[m] 𝑠𝑧[m] 

link 0 -0.0024 -0.1659 0.0000 -0.3072 -0.1152 

link 1 0.0000 0.0041 0.0000 0.0217 -0.1747 

 

First, the overall inertial properties are identified for multiple postures. The overall inertial 

properties were identified for three postures, as shown in Fig. 4. Table 2 shows the preliminary 

identification results and elements of the rotation matrix of each posture.  

Figure 4. Postures for identification. 

Table 2. Preliminary identification results for inertial properties of whole body 

 posture1 posture2 posture3 𝐑1,1
0    

𝑀0 [kg] 80.817 80.817 80.817 0.9999 0.0071 0.0099 

𝐼𝑡𝑔𝑥𝑥[kgm2] 2.9221 3.6841 3.3737 -0.0096 0.9576 0.2880 

𝐼𝑡𝑔𝑦𝑦[kgm2] 1.6368 1.6167 2.1047 -0.0074 -0.2881 0.9576 

𝐼𝑡𝑔𝑧𝑧[kgm2] 2.3958 3.1638 3.1348 𝐑1,2
0    

𝐼𝑡𝑔𝑥𝑦[kgm2] 0.0066 0.0155 -0.6960 0.9998 0.0037 0.0179 

𝐼𝑡𝑔𝑧𝑥[kgm2] -0.0017 0.0000 -0.2345 0.0014 0.9620 -0.2730 

𝐼𝑡𝑔𝑦𝑧[kgm2] 0.0203 0.0723 -0.6275 -0.0182 0.2730 0.9618 

𝑠𝑡𝑔𝑥[m] 0.0002 -0.0001 0.0332 𝐑1,3
0    

𝑠𝑡𝑔𝑥[m] -0.2562 -0.2382 -0.2468 -0.0010 0.0000 -1.0000 

𝑠𝑡𝑔𝑥[m] -0.1265 -0.1244 -0.0942 -0.0316 0.9995 0.0000 

    0.9995 0.0316 -0.0010 



In the proposed identification method, to obtain the subset vector 𝚽𝑠, an evaluation function 𝐸𝑣1 

is defined using Equation (10) and preliminary identified values in Table 2. 

 𝐸𝑣1 = 𝑛𝑜𝑟𝑚

(

 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑀0𝑠𝑡𝑥,1

𝑀0𝑠𝑡𝑦,1

𝑀0𝑠𝑡𝑧,1

𝐼𝑡𝑔𝑦𝑦,1 − 𝑀0(𝑠𝑡𝑥,1
2 + 𝑠𝑡𝑧,1

2 )

𝐼𝑡𝑔𝑥𝑥,1 − 𝑀0(𝑠𝑡𝑦,1
2 + 𝑠𝑡𝑧,1

2 ) − 𝐼𝑡𝑔𝑦𝑦,1 + 𝑀0(𝑠𝑡𝑥,1
2 + 𝑠𝑡𝑧,1

2 )

𝐼𝑡𝑔𝑥𝑥,1 − 𝑀0(𝑠𝑡𝑦,1
2 + 𝑠𝑡𝑧,1

2 ) − 𝐼𝑡𝑔𝑧𝑧,1 + 𝑀0(𝑠𝑡𝑥,1
2 + 𝑠𝑡𝑦,1

2 )

𝐼𝑡𝑔𝑥𝑦,1 + 𝑀0𝑠𝑡𝑥,1𝑠𝑡𝑦,1 − 𝐼𝑡𝑔𝑧𝑥,1 − 𝑀0𝑠𝑡𝑥,1𝑠𝑡𝑧,1

𝐼𝑡𝑔𝑧𝑥,1 + 𝑀0𝑠𝑡𝑥,1𝑠𝑡𝑧,1 − 𝐼𝑡𝑔𝑦𝑧,1 − 𝑀0𝑠𝑡𝑦,1𝑠𝑡𝑧,1

𝐼𝑡𝑔𝑥𝑦,1 + 𝑀0𝑠𝑡𝑥,1𝑠𝑡𝑦,1 + 𝐼𝑡𝑔𝑧𝑥,1 + 𝑀0𝑠𝑡𝑥,1𝑠𝑡𝑧,1

⋮
𝐼𝑡𝑔𝑥𝑦,3 + 𝑀0𝑠𝑡𝑥,3𝑠𝑡𝑦,3 + 𝐼𝑡𝑔𝑧𝑥,3 + 𝑀0𝑠𝑡𝑥,3𝑠𝑡𝑧,3 ]

 
 
 
 
 
 
 
 
 
 
 
 

− 𝐙𝑠𝚽𝑠

)

 
 
 
 
 
 
 
 
 
 

. (17) 

The identification is performed with an optimization calculation using the subset vector 𝚽𝑠  as a 

variable and the evaluation function 𝐸𝑣1. In this paper, the interior point method was used as the 

optimization method. The identification results for the subset vector 𝚽𝑠 are shown in Table 3. 

Table 3. Identification results for the subset vector 𝚽𝑠 

𝑀𝑆0𝑥 

[kgm] 

𝑀𝑆0𝑦 

[kgm] 

𝑀𝑆0𝑧 

[kgm] 

𝑀𝑆1𝑥 

[kgm] 

𝑀𝑆1𝑦 

[kgm] 

𝑀𝑆1𝑧 

[kgm] 

0.0599 -20.2678 -7.6113 -0.0177 0.3212 -2.6268 

𝐽0𝑦𝑧[kgm2] 𝐽0𝑧𝑥[kgm2] 𝐽0𝑥𝑦[kgm2] 𝐽1𝑦𝑧[kgm2] 𝐽1𝑧𝑥[kgm2] 𝐽1𝑥𝑦[kgm2] 

-2.5027 0.0121 0.0192 0.0519 -0.0087 -0.0052 

𝐽0𝑥𝑥 − 𝐽0𝑦𝑦 

[kgm2] 

𝐽0𝑧𝑧 − 𝐽0𝑦𝑦 

[kgm2] 

𝐽1𝑥𝑥 − 𝐽1𝑦𝑦 

[kgm2] 

𝐽1𝑧𝑧 − 𝐽1𝑦𝑦 

[kgm2] 

𝐽0𝑦𝑦 + 𝐽1𝑦𝑦 

[kgm2] 

 

6.6079 5.2583 -0.0238 -0.5064 2.9315  

 

From the results shown in Table 3 and Equation (18), when 𝐽0𝑦𝑦 is obtained, all values of 𝚽𝐵 can 

be obtained. 

 𝚽𝐵 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐌𝐒0

𝐽0𝑥𝑥 − 𝐽0𝑦𝑦

0
𝐽0𝑧𝑧 − 𝐽0𝑦𝑦

𝐽0𝑦𝑧

𝐽0𝑧𝑥

𝐽0𝑥𝑦

𝐌𝐒1

𝐽1𝑥𝑥 − 𝐽1𝑦𝑦 + 𝐽0𝑦𝑦 + 𝐽1𝑦𝑦

𝐽0𝑦𝑦 + 𝐽1𝑦𝑦

𝐽1𝑧𝑧 − 𝐽1𝑦𝑦 + 𝐽0𝑦𝑦 + 𝐽1𝑦𝑦

𝐽1𝑦𝑧

𝐽1𝑧𝑥

𝐽1𝑥𝑦 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝟎
𝐽0𝑦𝑦

𝐽0𝑦𝑦

𝐽0𝑦𝑦

0
0
0
𝟎

−𝐽0𝑦𝑦

−𝐽0𝑦𝑦

−𝐽0𝑦𝑦

0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

.  (18) 

Second, the relative motion between the links was measured experimentally to identify 𝐽0𝑦𝑦. The 

motion was measured at a frame rate of 120 Hz using motion capture with a total of 12 markers 

on link 0 and the platform and 8 markers on link 1. Link 1 was tilted from its stationary position 

and attached to link 0 using a nylon thread, and relative motion was generated by gravity by 

releasing the nylon thread. The translational displacement 𝐪𝑜
𝐺  of link 0 and the rotational 



displacement 𝛉𝐺 of link 0 and link 1, expressed in the ground-coordinate system, were obtained 

from the marker position data at each sampling time using the singular value decomposition 

method [8]. The rotational displacement 𝛉𝐺 was defined in XYZ-Eulerian angles. The inertial 

parameters measuring device has two degrees of freedom in XY axis translation and three degrees 

of freedom in rotation. The velocity �̇�0
𝐺 , acceleration �̈�0

𝐺 , angular velocity 𝛚𝐺  and angular 

acceleration �̇�𝐺 were obtained from this time series data using a zero phase filter with filter order 

50, passband frequency 5 Hz and stopband frequency 10 Hz. Figure 5 shows these results. 

Figure 5. Results of motion capture measurements and their derivatives. 

In addition, since the diagonal term of the inertia tensor should be positive, we obtain the 

following relationship with respect to  𝐽0𝑦𝑦, 

 max (0, 𝐽0𝑦𝑦 − 𝐽0𝑥𝑥, 𝐽0yy − 𝐽0zz) < 𝐽0𝑦𝑦 < min (𝐽0𝑦𝑦 + 𝐽1𝑦𝑦, 𝐽0𝑦𝑦 + 𝐽1𝑥𝑥, 𝐽0𝑦𝑦 + 𝐽1𝑧𝑧). (19) 

To identify 𝐽0𝑦𝑦 properly, an evaluation function 𝐸𝑣2  was defined using Equation (16) as shown 

in Equation (20). 

 𝐸𝑣2 = 𝑛𝑜𝑟𝑚(

[
 
 
 
𝐊𝐪0,𝑡1 − 𝐘𝐵1𝑀0,𝑡1𝑀0 − 𝐌𝑃�̈�0,𝑡1

𝐊𝐪0,𝑡2 − 𝐘𝐵1𝑀0,𝑡2𝑀0 − 𝐌𝑃�̈�0,𝑡2

⋮
𝐊𝐪0,𝑡𝑙 − 𝐘𝐵1𝑀0,𝑡𝑙𝑀0 − 𝐌𝑃�̈�0,𝑡𝑙 ]

 
 
 
− [

𝐘𝐵1,𝑡1

𝐘𝐵1,𝑡2

⋮
𝐘𝐵1,𝑡𝑙

]𝚽𝐵).  (20) 

The vector 𝚽𝐵 in Equation (20) is determined from Equation (18) given 𝐽0𝑦𝑦. The measurement 

data from 3 to 10 seconds in Fig. 5 are adopted in Equation (20). The identification is performed 

with an optimization calculation using  𝐽0𝑦𝑦  as a variable and the evaluation function 𝐸𝑣2. The 

relationship 0 < 𝐽0𝑦𝑦 < 2.4250 can be obtained from Equation (19) based on the identification 

results of 𝚽𝑠, so an optimization calculation is performed within this range. The identification 

results for all minimal set of inertial parameters and the results calculated from the separately 

identified inertial properties are shown in Table 4. 

3.2 Discussion 

Figure 6 shows the left side of Equation (16) with a solid line and the result of the right side 

calculated using the identification result with a dotted line as time series data. The solid and dotted 

lines are in good agreement, indicating that the optimization calculation was satisfactory. 

The accuracy of the identification of the inertial properties by the measurement devices used in 

the experiment is ±  1 mm with respect to the center of gravity position and ±  1%  of the 

maximum principal moment of inertia with respect to the inertia tensor.  

The minimal set of inertial parameter for the center of gravity position was devided by the mass 

for comparison with single-body identification accuracy. The maximum errors of identification 

results are shown in Table 5. 



Table 4. Minimal set of inertial parameters of each link 

 𝑀0[kg] 𝐽0𝑥𝑥 [kgm2] 𝐽0𝑦𝑦[kgm2] 𝐽0𝑧𝑧[kgm2] 𝐽0𝑥𝑦[kgm2] 

ID 80.817 8.9788 2.3708 7.6291 0.0192 

Cal. 80.817 8.9460 2.3639 7.6364 -0.0072 

Error 0.0000 0.0328 0.0069 -0.0073 0.0264 

 𝐽0𝑧𝑥[kgm2] 𝐽0𝑦𝑧[kgm2] 𝑀𝑆0𝑥[kgm] 𝑀𝑆0𝑦[kgm] 𝑀𝑆0𝑧[kgm] 

ID 0.0121 -2.5027 0.0599 -20.2678 -7.6113 

Cal. -0.0020 -2.4986 0.0031 -20.2502 -7.5935 

Error 0.0141 -0.0041 0.0568 -0.0176 -0.0178 

 𝐽1𝑥𝑥 [kgm2] 𝐽1𝑦𝑦[kgm2] 𝐽1𝑧𝑧[kgm2] 𝐽1𝑥𝑦[kgm2] 𝐽1𝑧𝑥[kgm2] 

ID 0.5368 0.5607 0.0542 -0.0052 -0.0087 

Cal. 0.5388 0.5564 0.0528 0.0000 0.0003 

Error -0.0020 0.0043 0.0014 -0.0052 -0.0090 

 𝐽1𝑦𝑧[kgm2] 𝑀𝑆1𝑥[kgm] 𝑀𝑆1𝑦[kgm] 𝑀𝑆1𝑧[kgm]  

ID 0.0519 -0.0177 0.3212 -2.6268  

Cal 0.0606 0.0013 0.3234 -2.6017  

Error -0.0087 -0.0190 -0.0022 -0.0251  

Figure 6. Left and right sides of time series in Equation (16). 

Table 5. Maximum error of minimal set of inertial parameters for each link 

 𝐸𝑀𝑆𝑗/𝑀0[m] 𝐸𝑀𝑆𝑗/𝑚𝑗[m] 𝐸𝐽𝑗/𝐼𝑚[%] 𝐸𝐽𝑗/𝐽𝑚𝑗 [%] 

link 0 0.0007 0.0009 0.3657 0.3657 

link 1 0.0003 0.0017 0.1006 1.5537 

 

The value of 𝐸𝑀𝑆𝑗 is maximum error in 𝐌𝐒𝑗 in absolute value and the value of 𝐸𝐽𝑗 is maximum 

error in 𝐉𝑗 in absolute value. The value of 𝐼𝑚 is the maximum principal moments of inertia around 

the origin for attitude 1 and the value of 𝐽𝑚𝑗 is the maximum principal moment of inertia of the 

minimum dynamic parameters related to the inertia tensor of each link. Thus, the errors for 

𝐸𝑀𝑆𝑗/𝑀0  and 𝐸𝐽𝑗/𝐼𝑚  are comparable to single-body identification accuracy. The error for 

𝐸𝑀𝑆𝑗/𝑚𝑗 and 𝐸𝐽𝑗/𝐽𝑚𝑗 is greater for link 1 than for link 0. This is because the identification error 

depends on the overall inertial properties. Therefore, the smaller the mass and principal moment 

of inertia of the link is relative to the mass and principal moment of inertia of the multi-body 

system, the larger the error will be. However, although the mass of link 1 is less than 20% of the 

total mass, it can be seen that even the error for the mass and principal moment of inertia of each 



link is obtained with sufficient accuracy for practical purposes. 

From the above results, it is expected that if the mass and principal moment of inertia of the link 

is too small in relation to the overall mass and principal moment of inertia, the error will be large. 

However, assuming the case of use in motion simulation, this is unlikely to be a problem as the 

influence of the small links on the motion simulation is small. The conventional identification 

methods using a set of measured link motion and ground reaction forces is difficult to apply to 

the identification of individual human bodies. The proposed identification method is able to 

identify the minimal set of inertial parameters in all three dimensions from relatively simple 

movements. Identification accuracy was also found to be very high. As a result, the proposed 

identification method has the potential to identify the minimal set of inertial parameters with an 

accuracy that allows individual human differences to be determined. 

4 CONCLUSIONS 

A new method for identifying the minimal set of inertial parameters of a multi-body system is 

developed by expanding and applying the identification method based on free vibration 

measurements, which is the identification method for inertial properties of single-body. The 

calculation process of the proposed identification method was explained. The performance of the 

method was evaluated with experimental result using a simple measurement object. The 

conventional identification methods use a set of measured link motion and ground reaction forces. 

Only the minimal set of inertial parameters for a sagittal plane can be identified from movements 

such as walking motion of human bodies. Thus, it is difficult to apply these methods to the 

identification of individual human bodies. On the other hand, the proposed identification method 

is able to identify the minimal set of inertial parameters in all three dimensions from relatively 

simple movements. An accuracy of the proposed method is comparable to single-body 

identification accuracy. This result is considered accurate enough for practical use and the 

proposed identification method has the potential to identify the minimal set of inertial parameters 

with an accuracy that allows individual human differences to be determined. 
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